# «Задания с развернутым ответом в ЕГЭ по физике 2025 года: правила оформления, примеры решений»

Безуглова Галина Сергеевна

кандидат физико-математических наук, автор пособий издательства «Легион»









#### $0\Gamma 9 - 2025$



#### Книга содержит:

- 30 тренировочных вариантов
- теоретический материал
- ответы ко всем вариантам
- решение заданий с развернутым ответом

#### Оглавление

От авторов

| 0 . un.op   |                                             |    |
|-------------|---------------------------------------------|----|
| Глава І.    | Теоретический материал для подготовки к ОГЭ | (  |
| <b>§</b> 1. | Механические явления                        | (  |
| 1.1.        | Кинематика                                  | (  |
| 1.2.        | Динамика                                    | 8  |
| 1.3.        | Законы сохранения в механике                | 1( |
| 1.4.        | Статика. Простые механизмы                  | 11 |
| 1.5.        | Гидростатика                                | 11 |
| 1.6.        | Механические колебания и волны              | 12 |
| § 2.        | Тепловые явления                            | 18 |
| § 3.        | Электромагнитные явления                    | 14 |
| 3.1.        | Электризация тел                            | 14 |
| 3.2.        | Постоянный ток                              | 15 |
| 3.3.        | Магнитное поле. Электромагнитная индукция   | 16 |
| 3.4.        | Электромагнитные колебания и волны          | 17 |
| § 4.        | Элементы оптики                             | 17 |
| § 5.        | Квантовая физика                            | 18 |
| § 6.        | Краткие справочные данные                   | 19 |
| Глава II.   | Тренировочные варианты                      | 21 |
| THE DE TH   | - F                                         | 21 |
|             | Вариант № 1                                 | 22 |
|             | Вариант № 2                                 | 32 |
|             | Вариант № 3                                 | 45 |
|             | Вариант № 4                                 | 53 |
|             | Вариант № 5                                 | 64 |
|             |                                             | 75 |
|             | Вариант № 7                                 | 86 |
|             | Вариант № 8                                 | 96 |
|             | Вариант № 9                                 | 06 |
|             | Вариант № 10                                |    |
|             |                                             |    |

|           |        |      |     |   |    |     |    |    |    |    |    |   |    |      | _ |      | _ | _ | _ | _ | _ | _  | _ |         |
|-----------|--------|------|-----|---|----|-----|----|----|----|----|----|---|----|------|---|------|---|---|---|---|---|----|---|---------|
| В         | ариант | № 11 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   |    |   | <br>126 |
|           | ариант |      |     |   |    |     |    |    |    |    |    |   |    |      |   |      |   |   |   |   |   |    |   |         |
| В         | ариант | № 13 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   | ì |   |    |   | <br>147 |
| В         | ариант | № 14 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   | i |   |    |   | <br>156 |
| В         | ариант | № 15 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   |    |   | <br>165 |
| В         | ариант | № 16 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   |    |   | <br>175 |
| В         | ариант | № 17 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   | i |   |    |   | <br>185 |
| В         | ариант | № 18 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   | ì |   |    |   | <br>195 |
| В         | ариант | № 19 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   |    |   | <br>205 |
| В         | ариант | № 20 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   |    |   | <br>216 |
| В         | ариант | № 21 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   |    |   | <br>227 |
| В         | ариант | № 22 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   |    |   | <br>240 |
| В         | ариант | № 23 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   | ٠. |   | <br>253 |
| В         | ариант | № 24 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   | ٠. |   | <br>267 |
| В         | ариант | № 25 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   | ٠. |   | <br>279 |
| В         | ариант | № 26 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   |    |   | <br>290 |
| В         | ариант | № 27 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   | ٠. |   | <br>300 |
| В         | ариант | № 28 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   | ٠. |   | <br>311 |
| В         | ариант | № 29 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   | ٠. |   | <br>321 |
| В         | ариант | № 30 |     |   |    |     |    |    |    |    |    |   |    | <br> |   | <br> |   |   |   |   |   | ٠. |   | <br>331 |
| Решения з | аданий | c pa | звё | p | ну | /Tl | ым | 10 | TI | зе | TO | M | ١. | <br> |   |      |   |   |   |   |   |    |   | <br>341 |
| Ответы    |        |      |     |   |    |     |    |    |    |    |    |   |    | <br> |   |      |   |   |   |   |   |    |   | <br>397 |



#### $O\Gamma 9 - 2025$



#### Книга содержит:

- более 1000 заданий, разделенных по уровню сложности и группам проверяемых умений
- теоретический материал
- ответы ко всем заданиям

#### Оглавление

| От автор    | OOB                                                   | (       |
|-------------|-------------------------------------------------------|---------|
| Глава I.    | Теоретический материал для подготовки к ОГЭ           |         |
| § 1.        | Механические явления                                  | 7       |
| 1.1.        | Кинематика                                            | 7       |
| 1.2.        | Динамика                                              | (       |
| 1.3.        | Законы сохранения в механике                          | 11      |
| 1.4.        | Статика. Простые механизмы                            | 12      |
| 1.5.        | Гидростатика                                          | 12      |
| 1.6.        | Механические колебания и волны                        | 13      |
| § 2.        | Тепловые явления                                      | 13      |
| <b>§</b> 3. | Электромагнитные явления                              | 15      |
| 3.1.        | Электризация тел                                      | 15      |
|             | Постоянный ток                                        | 15      |
|             | Магнитное поле. Электромагнитная индукция             | 17      |
| 3.4.        | Электромагнитные колебания и волны                    | 18      |
| § 4.        | Элементы оптики                                       | 18      |
| § 5.        | Квантовая физика                                      | 18      |
| <b>§</b> 6. | Краткие справочные данные                             | 20      |
| Глава II.   | Тематические задания ОГЭ                              | 22      |
| § 1.        | Механические явления                                  | 22      |
| 1.1.        | Задания на соответствие                               | $2^{2}$ |
| 1.2.        | Задания на множественный выбор                        | 42      |
| 1.3.        | Задания на распознавание проявления физического       |         |
|             | явления                                               | 63      |
| 1.4.        | Задания на распознавание явления по его описанию      | 68      |
| 1.5.        | Задания на проведение прямых измерений и серии        |         |
|             | измерений                                             | 77      |
| 1.6.        | Работа с текстом физического содержания               | 84      |
| 1.7.        | Экспериментальные задания (на реальном оборудовании). | 90      |
| 1.8.        | Качественные задания                                  | 93      |
|             | Расчётные задания (базовый уровень сложности)         | 95      |
|             |                                                       | 107     |
|             | .Расчётные задания (высокий уровень сложности)        |         |
| § 2.        | Тепловые явления                                      | 113     |
|             |                                                       |         |

| 1 |   |      | Ornaba                                                                                   | CHHC |
|---|---|------|------------------------------------------------------------------------------------------|------|
|   |   | 2.1. | Задания на соответствие                                                                  | 113  |
|   |   |      | Задания на множественный выбор                                                           |      |
|   |   |      | Задания на распознавание проявления физического                                          |      |
|   |   | 2.0. | явления                                                                                  | 130  |
|   |   | 9 4  | Задания на распознавание явления по его описанию                                         |      |
|   |   |      | Задания на проведение прямых измерений и серии                                           | 100  |
|   |   | 2.0. | измерений                                                                                | 139  |
|   |   | 9.6  | Работа с текстом физического содержания                                                  |      |
|   |   |      | Качественные задания                                                                     |      |
|   |   |      | Расчётные задания (базовый уровень сложности)                                            |      |
|   |   |      | Расчётные задания (повышенный уровень сложности)                                         |      |
|   |   |      | Расчётные задания (повышенный уровень сложности)                                         |      |
|   | 2 | 3.   | Электромагнитные явления                                                                 |      |
|   | S |      | Задания на соответствие                                                                  |      |
|   |   |      | Задания на множественный выбор                                                           |      |
|   |   |      | Задания на распознавание проявления физического                                          | 100  |
|   |   | J.J. | явления                                                                                  | 100  |
|   |   | 9.4  | Задания на распознавание явления по его описанию                                         |      |
|   |   |      | Задания на проведение прямых измерений                                                   | 200  |
|   |   | ა.ა. | и серии измерений, правильное составление схемы                                          |      |
|   |   |      | и серии измерении, правильное составление схемы<br>включения прибора в экспериментальную |      |
|   |   |      |                                                                                          | 916  |
|   |   | 9.6  | установку Работа с текстом физического содержания                                        | 007  |
|   |   |      | Экспериментальные задания (на реальном оборудовании).                                    |      |
|   |   |      | Качественные задания (на реальном ооорудовании).  Качественные задания                   |      |
|   |   |      | ,                                                                                        |      |
|   |   |      | Расчётные задания (базовый уровень сложности)                                            |      |
|   |   |      | .Расчётные задания (повышенный уровень сложности)                                        |      |
|   | e |      | .Расчётные задания (высокий уровень сложности)                                           |      |
|   | S |      | Световые явления                                                                         |      |
|   |   |      | Задания на соответствие                                                                  |      |
|   |   |      | Задания на множественный выбор                                                           | 209  |
|   |   | 4.3. | Задания на распознавание проявления физического                                          | 070  |
|   |   |      | явления                                                                                  |      |
|   |   |      | Задания на распознавание явления по его описанию                                         | 2/8  |
|   |   | 4.5. | Задания на проведение прямых измерений и серии                                           | 005  |
|   |   | 1.0  | измерений                                                                                |      |
|   |   |      | Работа с текстом физического содержания                                                  |      |
|   |   | 4.7. | Экспериментальные задания (на реальном оборудовании) Качественные задания                | CTF  |
|   |   | 4.8. | Качественные залания                                                                     | 293  |

#### $O\Gamma 9 - 2025$



#### Книга содержит:

- более 350 заданий, разделенных по уровню разделам физики
- теоретический материал
- решения некоторых заданий
- ответы ко всем заданиям

#### Оглавление

| от автора                                      | U  |
|------------------------------------------------|----|
| Теоретический материал для подготовки к ОГЭ    | 6  |
| § 1. Механические явления                      | 6  |
| 1.1. Қинематика                                | 6  |
| 1.2. Динамика                                  | 8  |
| 1.3. Законы сохранения в механике              | 9  |
| 1.4. Статика. Простые механизмы                | 10 |
| 1.5. Гидростатика                              | 11 |
| 1.6. Механические колебания и волны            | 11 |
| § 2. Тепловые явления                          | 12 |
| § 3. Электромагнитные явления                  | 14 |
| 3.1. Электризация тел                          | 14 |
| 3.2. Постоянный ток                            | 14 |
| 3.3. Магнитное поле. Электромагнитная индукция | 16 |
| 3.4. Электромагнитные колебания и волны        | 17 |
| § 4. Элементы оптики                           | 17 |
| § 5. Квантовые явления                         | 18 |
| § 6. Краткие справочные данные                 | 19 |
| Экспериментальные задания                      | 21 |
| § 7. Критерии оценивания                       | 21 |
| Пример реальной работы и её оценивания         | 24 |
| § 8. Примеры выполнения заданий                | 28 |
| § 9. Задания для самостоятельной работы        | 32 |
| 9.1. Механические явления                      | 32 |
| 9.2. Электрические явления                     | 36 |
| 9.3. Оптические явления                        | 38 |
|                                                |    |

| та тественные вадания того положения |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| § 10. Критерии оценивания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40    |
| Пример реальной работы и её оценивания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41    |
| § 11. Примеры выполнения заданий                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43    |
| § 12. Задачи для самостоятельной работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49    |
| 12.1. Механические явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49    |
| 12.2. Тепловые явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 51  |
| 12.3. Электрические явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 53  |
| 12.4. Оптические явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 55  |
| Расчётные задания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 57  |
| § 13. Критерии оценивания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Пример реальной работы и её оценивания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| § 14. Механические явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61    |
| Примеры выполнения заданий                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61    |
| Задачи для самостоятельной работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 87  |
| § 15. Тепловые явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100   |
| Примеры выполнения заданий                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100   |
| Задачи для самостоятельной работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 106   |
| § 16. Электрические явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112   |
| Примеры выполнения заданий                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112   |
| Задачи для самостоятельной работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121   |
| § 17. Қомбинированные задачи                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 131 |
| Примеры выполнения заданий                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 131 |
| Задачи для самостоятельной работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 142   |
| 17.1. Механические и тепловые явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 142   |
| 17.2. Механические и электрические явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 146   |
| 17.3. Тепловые и электрические явления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 147   |
| Ответы к сборнику заданий                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 152 |

Капественные запания



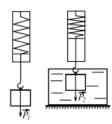
#### $O\Gamma 9 - 2025$



#### Книга содержит:

- 24 лабораторные работы
- теоретический материал
- шаблоны выполнения лабораторных работ

#### Вариант 3. Исследование зависимости выталкивающей силы жидкости от характеристик тела


Используя динамометр, цилиндр, сосуд с водой, соберите экспериментальную установку для исследования зависимости выталкивающей силы от объёма погружённой части тела. Для этого последовательно погрузите цилиндр в воду на четвёртую часть объёма, на половину объёма и полностью. Для каждого погружения рассчитайте выталкивающую силу. Абсолютную погрешность измерения силы с помощью динамометра принять равной  $\pm 0.05~\mathrm{H}$ .

#### В бланке ответов

- сделайте рисунок экспериментальной установки для измерения выталкивающей силы;
  - 2) запишите формулу для расчёта выталкивающей силы;
- для каждого из трёх погружений укажите в таблице результаты измерений веса цилиндра в воздухе и веса цилиндра в воде (с учётом абсолютных погрешностей измерений), а также для каждого погружения рассчитайте выталкивающую силу;
- сформулируйте вывод о зависимости выталкивающей силы от объёма погружённой части тела.

#### Образец возможного оформления

1. Схема эксперимента



2. 
$$F_{\text{BbIT}} = P_1 - P_2$$
.

3

|                     | $0,\!25V$ | 0.5V   | V      |
|---------------------|-----------|--------|--------|
| Bec в воздухе $P_1$ | ( ±) H    | ( ±) H | ( ±) H |
| Bec в воде $P_2$    | ( ±) H    | (±) H  | ( ±) H |
| Выталкивающая       |           |        |        |
| сила $F_{ m BЫТ.}$  | Н         | Н      | Н      |



### **ΕΓЭ - 2025**

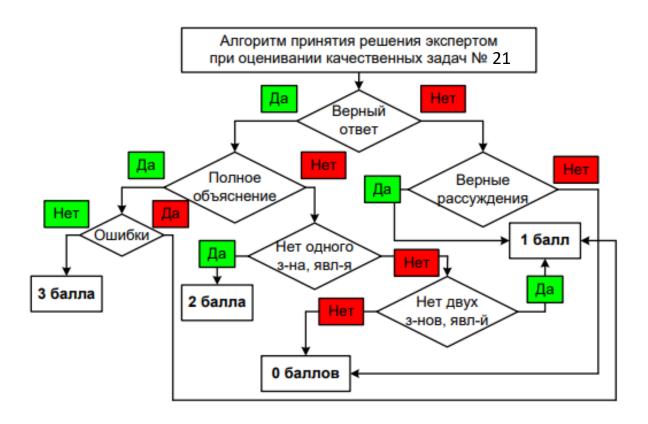
|                                              | ЕГЭ-2024 | Баллы |
|----------------------------------------------|----------|-------|
| Задания с кратким ответом в виде числа       | 10       | 10    |
| Задания с кратким ответом в виде набора цифр | 10       | 18    |
| Задания с развёрнутым ответом                | 6        | 17    |
|                                              | 26       | 45    |



# Спецификация ЕГЭ-2025

|    | Проверяемые элементы содержания                                                         | Уровень<br>сложности | Макси-<br>мальный<br>балл | Процент<br>выполне-<br>ния (2024 г) |
|----|-----------------------------------------------------------------------------------------|----------------------|---------------------------|-------------------------------------|
| 21 | Механика, молекулярная физика или<br>электродинамика                                    | Повы-<br>шенный      | 3                         | 37.2                                |
| 22 | Механика или молекулярная физика (в зависимости от тематики качественной задачи)        | Повы-<br>шенный      | 2                         | 39.9                                |
| 23 | Молекулярная физика или электродинамика (в зависимости от тематики качественной задачи) | Повы-<br>шенный      | 2                         | 38.0                                |
| 24 | Молекулярная физика                                                                     | Высокий              | 3                         | 21,6                                |
| 25 | Электродинамика                                                                         | Высокий              | 3                         | 23,9                                |
| 26 | Механика                                                                                | Высокий              | 4                         | 18,2                                |
|    |                                                                                         |                      |                           | 19,8                                |

|    | Проверяемые элементы содержания                   | Уровень<br>сложности | Максимальный<br>балл |
|----|---------------------------------------------------|----------------------|----------------------|
| 21 | Механика, молекулярная физика или электродинамика | П                    | 3                    |

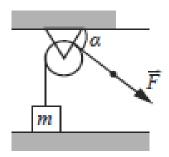

Качественные задачи (№ 21) предполагают решение, состоящее из **ответа** на вопрос и **объяснения** с опорой на изученные физические закономерности или явления. Требования к полноте ответа приводятся в самом тексте задания.

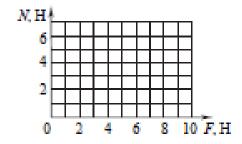
Обобщённая схема оценивания строится на основании трёх элементов решения:

- формулировка ответа;
- объяснение;
- прямые указания на физические явления и законы.

Выполнение задания 21 оценивается в 3 балла только при наличии верного ответа.







Методические материалы для председателей и членов предметных комиссий субъектов Российской Федерации по проверке выполнения заданий с развёрнутым ответом экзаменационных работ ЕГЭ 2023 года. www.fipi.ru



21. Лёгкая нить, привязанная к грузу массой m = 0,4 кг, перекинута через идеальный неподвижный блок. К правому концу нити приложена постоянная сила F. Левая часть нити вертикальна, а правая наклонена под углом  $\alpha = 30^{\circ}$  к горизонту (см. рисунок).

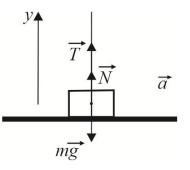
Постройте график зависимости модуля силы реакции стола N от F на отрезке  $0 \le F \le 10$  H. Ответ поясните, указав, какие физические явления и закономерности Вы использовали для объяснения. Сделайте рисунок с указанием сил, приложенных к грузу.







27 Лёгкая нить, привязанняя к грузу массой m = 0.4 кг, перекинута через циеальный неполвижный блок. К правому концу нити приложена постоянная сила F. Левах часть нити вертикальна, а правах наклонена под утлом α = 30° к горизонту (см. рисумок).


Постройте графих зависимости молуля силы реакции стола N от F на отреже  $0.5\,F$ : 10 H. Ответ поясните, указав, какие филические явлених и закономерности Вы использовали для объяснения. Сделайте рисунок с указанием сил, приложенных к трузу.





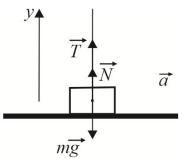
#### Возможное решение:

Пока сила F мала, груз покоится относительно стола. На груз при этом действуют сила тяжести mg, сила реакции со стороны стола N и сила натяжения нити T. Запишем второй закон Ньютона для груза в проекциях на ось y введённой системы отсчёта: N+T-mg=0. Так как блок невесомый, нить нерастяжимая F=T.





27 Лёгкая нить, привязанная к грузу массой m = 0.4 кг, перекинута через идеальный неполвикамий блок. К правому концу нити приложена постоянная сила F. Левах часть нити вертикальна, а правах наклонена под углом α = 30° к горизонту (см. рисумок).


Постройте графих зависимости модуля силы реакции стола N от F на отрезке  $0 \le F \le 10$  Н. Ответ поясните, указав, какие физические явлених и закономерности Вы использовали для объяснения. Сделайте рисунок с указанием сил, приложенных к трузу.





#### Возможное решение:

Пока сила F мала, груз покоится относительно стола. На груз при этом действуют сила тяжести mg, сила реакции со стороны стола N и сила натяжения нити T. Запишем второй закон Ньютона для груза в проекциях на ось у введённой системы отсчёта: N +T — mg = 0. Так как блок невесомый, нить нерастяжимая F = T.



Сила натяжения нити N = mg - F. В начальный момент времени (когда F=0) сила реакции опоры N = mg = 4 H.

В момент, когда сила F станет равна силе тяжести F = mg = 4 H сила реакции опоры станет равна нулю.



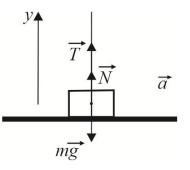
27 Лёгкая нить, привязанная к грузу массой m = 0.4 кг, перекинута через идеальный неполвиканый блок. К правому концу нити приложена постоянная сила F. Левах часть нити вертикальна, а правах наклонена под утлом α = 30° к горизонту (см. рисунок).

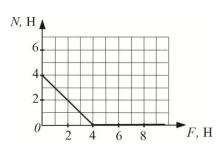
Постройте графии зависимости модуля силы реакции стола N от F на отрезке  $0 \le F \le 10$  Н. Ответ поясните, указав, какие физические явления и закономерности Вы использовали для объяснения. Сделайте рисунок с указанием сил, приложенных к трузу.





#### Возможное решение:

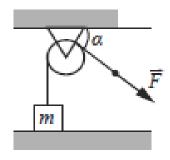

Пока сила F мала, груз покоится относительно стола. На груз при этом действуют сила тяжести mg, сила реакции со стороны стола N и сила натяжения нити T. Запишем второй закон Ньютона для груза в проекциях на ось y введённой системы отсчёта: N +T — mg = 0. Так как блок невесомый, нить нерастяжимая F = T.

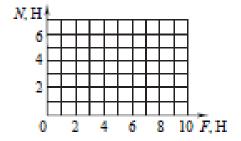

Сила натяжения нити N = mg - F. В начальный момент времени (когда F=0) сила реакции опоры N = mg = 4 H.

В момент, когда сила F станет равна силе тяжести F = mg = 4 H сила реакции опоры станет равна нулю.

С увеличением силы F тело оторвется от стола и начнет двигаться вертикально вверх с ускорением a.

График зависимости силы реакции опоры N от силы F, с которой тянут груз за веревку, представлен на втором рисунке.



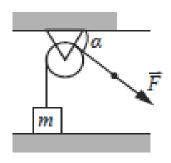



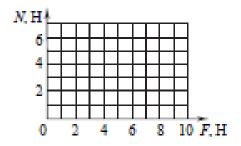



27. Лёгкая нить, привязанная к грузу массой m = 0,4 кг, перекинута через идеальный неподвижный блок. К правому концу нити приложена постоянная сила F. Левая часть нити вертикальна, а правая наклонена под углом  $\alpha = 30^{\circ}$  к горизонту (см. рисунок).

Постройте график зависимости модуля силы реакции стола N от F на отрезке  $0 \le F \le 10$ H. Ответ поясните, указав, какие физические явления и закономерности Вы использовали для объяснения. Сделайте рисунок с указанием сил, приложенных к грузу.







#### 3 балла:

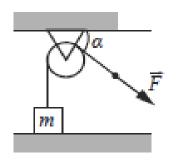
Приведено полное правильное решение, включающее правильный ответ (в данном случае правильно построенный график) и исчерпывающие верные рассуждения с прямым указанием наблюдаемых явлений и законов (в данном случае записан второй закон Ньютона, условие отрыва груза от стола)

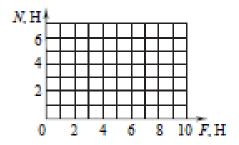
27. Лёгкая нить, привязанная к грузу массой m = 0,4 кг, перекинута через идеальный неподвижный блок. К правому концу нити приложена постоянная сила F. Левая часть нити вертикальна, а правая наклонена под углом  $\alpha = 30^{\circ}$  к горизонту (см. рисунок).

Постройте график зависимости модуля силы реакции стола N от F на отрезке  $0 \le F \le 10H$ . Ответ поясните, указав, какие физические явления и закономерности Вы использовали для объяснения. Сделайте рисунок с указанием сил, приложенных к грузу.






#### 2 балла:


- В объяснении не указано или не используется одно из физических явлений, свойств, определений или один из законов (формул), необходимых для полного верного объяснения.
- Если указаны все явления и законы, но в них содержится один логический недочет
- Если имеются лишние записи, не входящие в решение
- Если имеется неточность в указании на одно из физических явлений, 15свойств, определений, законов (формул)

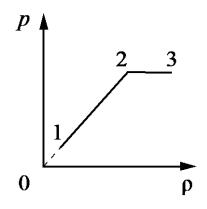


27. Лёгкая нить, привязанная к грузу массой m = 0,4 кг, перекинута через идеальный неподвижный блок. К правому концу нити приложена постоянная сила F. Левая часть нити вертикальна, а правая наклонена под углом  $\alpha = 30^{\circ}$  к горизонту (см. рисунок).

Постройте график зависимости модуля силы реакции стола N от F на отрезке  $0 \le F \le 10H$ . Ответ поясните, указав, какие физические явления и закономерности Вы использовали для объяснения. Сделайте рисунок с указанием сил, приложенных к грузу.

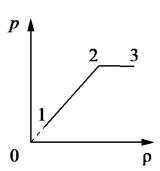





#### 1 балл:

Представлено решение, соответствующее одному из следующих случаев.

- Дан правильный ответ на вопрос задания, и приведено объяснение, в котором не указаны два явления или физических закона
- Имеющиеся рассуждения, направленные на получение ответа на вопрос задания, не доведены до конца.
- Имеющиеся рассуждения, приводящие к ответу, содержат ошибки.
- Имеются верные рассуждения, направленные на решение задачи, но 16указаны не все необходимые для решения явления и законы



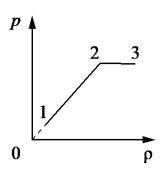

На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объём газа в процессах 1–2 и 2–3.





На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объём газа в процессах 1–2 и 2–3.



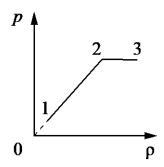

#### Возможное решение:

- 1. В соответствии с уравнением Менделеева-Клапейрона  $pV=rac{m}{M}RT$ , так как плотность газа  $ho=rac{m}{V}$ , то  $p=rac{
  ho}{M}RT$ .
- 2. На участке 2-3 плотность газа увеличивается, давление газа при этом не изменяется (процесс изобарический), следовательно, согласно уравнению Менделеева-Клапейрона температура газа уменьшается. Так как масса газа в этом процессе не меняется, а плотность увеличивается, значит его объем уменьшается.
- 3. В процессе 1-2 зависимость давления от плотности линейная. Следовательно, в этом процессе температура газа не изменяется (процесс изотермический). Поскольку плотность газа на этом участке тоже увеличивается, объём газа уменьшается.

На участке 1-2 объем уменьшается, температура не меняется, на участке 2-3 объём уменьшается, температура тоже уменьшается.



На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объём газа в процессах 1–2 и 2–3.




Что должно быть указано в работе на 3 балла:

Приведено полное правильное решение, включающее правильный ответ (в данном случае: изменение температуры и плотности газа в процессах 1–2 и 2–3) и исчерпывающие верные рассуждения с прямым указанием наблюдаемых явлений и законов (в данном случае: уравнение Менделеева - Клапейрона, формула плотности вещества)



На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объём газа в процессах 1–2 и 2–3.



#### Пример решения на 3 балла:

1) bocneuzyence apopuluoù 
$$p = \frac{PRT}{\mu} = 7 \frac{P}{P} = \frac{RT}{\mu}$$

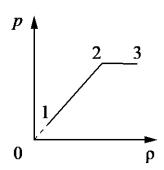
Kan hugno uz zpapelka  $\frac{P}{P} = const$ .  $R - const = 7\Delta T_{1-2} = 0$ .

 $\Delta T_{l-2}=0$  => npayecc l-2 - uz omepumeckuri. PV=const => observ yuensurema.

2) Как видио из градонке, в жоде проувеса 2-3 давление P не метена. проувес 2-3 — изобарический P = const.

 $T \mathcal{P} = \underbrace{P \mathcal{P}}_{RT+}$  monutoums raza brytogecce 2-3 ybenurubaemer => meunepamypu raza T yneunuaemer

 $\frac{1}{1}$  z const project uzodojiweckim => V ymenomaems.


Ombem: 1-2: meunepanypa ne uzuensema, običiu zuensuaemar.

2-3: meurepanypa quentuoemer, obsën quentuaemer.

Здесь и далее используются примеры работ из «Методических материалов для председателей и членов предметных комиссий субъектов Российской Федерации по проверке выполнения заданий с развёрнутым ответом экзаменационных работ ЕГЭ 2023 года», www.fipi.ru



На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объём газа в процессах 1–2 и 2–3.



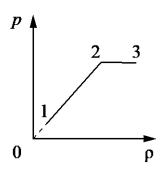
#### 2 балла

Дан правильный ответ, и приведено объяснение, но в решении имеется один или несколько из следующих недостатков.

Не указано или не используется **одно из** физических явлений, свойств, определений или один из законов (формул), необходимых для полного верного объяснения.

и (или)

Указаны все необходимые явления и законы, но в них содержится один логический недочёт.


и (или)

В решении имеются лишние записи

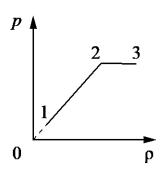
и (или)

В решении имеется неточность в указании на одно из физических явлений, свойств, определений, законов (формул)

На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объём газа в процессах 1–2 и 2–3.



#### Пример решение на 2 балла:


27.
P1
2 3
1) M=compt (no yew bur); 
$$\rho = \frac{M}{V} \Rightarrow \rho \sim \frac{1}{V}$$
2) Mayer 12
PV=VRI D1 (ybernambaemen);  $\rho T(yb)$ 
 $\Rightarrow V \downarrow (ymens marcia) \Rightarrow T = const (P_1V_1 = P_2V_2 no yhabue-
uno knañ ne pona)

3) Mayer 2-3
P=const;  $\rho T(yb) \Rightarrow V \downarrow (ym)$ 
 $\Rightarrow T \downarrow (ym) \left(\frac{V_1}{T_1} = \frac{V_2}{T_2}\right) y_0 yhabnenno Krañne hona

Omben: 1-2
V-ymens maerics;  $T = const$ ; 2-3
V n  $T$  - y mens maerics$$ 



На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объём газа в процессах 1–2 и 2–3.



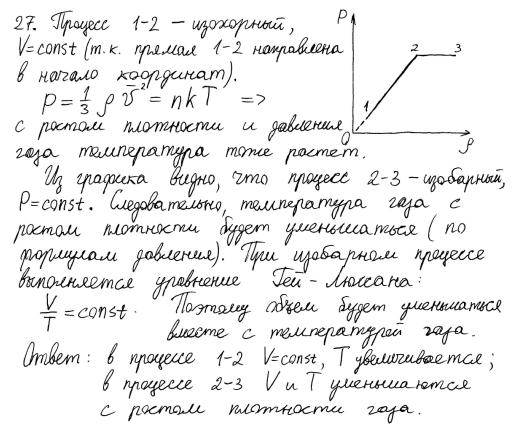
#### 1 балл

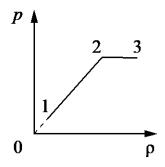
Представлено решение, соответствующее одному из следующих случаев.

Дан правильный ответ на вопрос задания, и приведено объяснение, но в нём не указаны два явления или физических закона, необходимых для полного верного объяснения. или

Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения не доведены до конца.

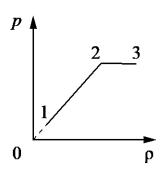
ИЛИ


Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения, приводящие к ответу, содержат ошибки.


или

Указаны не все необходимые для объяснения явления и законы, закономерности, но имеются верные рассуждения

На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объём газа в процессах 1–2 и 2–3.


#### . 2-3. Пример решение на 1 балла:







На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объём газа в процессах 1–2 и 2–3.



#### Пример решение на 0 баллов:

B rpoyecce 1-2: Obrèm ymeremaeter T.K. P n P

bospoctanot T.e. nonexymor cranobater brume k gpyr

gpyry. A remneparypa bospocraet T.K. on buytperson

suppreme bospocraet. U=32RT.; U=32RT2.

fiV=VRT1; p2V2=JRT2.

P. < f2 => T2. T.

B rpoyecce 2-3 obrèm rome queensmaetar T.K.

p bospocraer. Teameparypa bo he nequeensmaetar T.K.

benyearlos neperognit b bone Theppae accromence.



|    | Проверяемые элементы содержания                            | Уровень<br>сложности | Максимальный<br>балл |
|----|------------------------------------------------------------|----------------------|----------------------|
| 22 | Механика молекулярная физика (расчётная задача)            | П                    | 2                    |
| 23 | Молекулярная физика или электродинамика (расчётная задача) | П                    | 2                    |



Полное правильное решение задач 22 – 23 должно содержать

- законы и формулы, применение которых необходимо и достаточно для решения задачи

В качестве исходных принимаются формулы, указанные в кодификаторе.

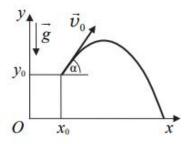


Полное правильное решение задач 22 – 23 должно содержать

- законы и формулы, применение которых необходимо и достаточно для решения задачи

В качестве исходных принимаются формулы, указанные в кодификаторе.

| 2.1.9  | Уравнение $p = nkT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | БУ, УУ | + |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
| 2.1.10 | Модель идеального газа в термодинамике: $\begin{cases} \text{Уравнение Менделеева} - \text{Клапейрона} \\ \text{Выражение для внутренней энергии} \end{cases}$ Уравнение Менделеева – Клапейрона (применимые формы записи): $pV = \frac{m}{\mu}RT = \nu RT = NkT,  p = \frac{\rho RT}{\mu}.$ Выражение для внутренней энергии одноатомного идеального газа (применимые формы записи): $U = \frac{3}{2}\nu RT = \frac{3}{2}NkT = \frac{3}{2}\frac{m}{\mu}RT = \nu c_{\upsilon}T = \frac{3}{2}pV$ | БУ, УУ | + |




Полное правильное решение задач 22 – 23 должно содержать

- законы и формулы, применение которых необходимо и достаточно для решения задачи

В качестве исходных принимаются формулы, указанные в кодификаторе.

Свободное падение. Ускорение свободного падения. Движение тела, брошенного под углом α к горизонту:



$$\begin{cases} x(t) = x_0 + \upsilon_{0x}t = x_0 + \upsilon_0 \cos \alpha \cdot t \\ y(t) = y_0 + \upsilon_{0y}t + \frac{g_y t^2}{2} = y_0 + \upsilon_0 \sin \alpha \cdot t - \frac{gt^2}{2} \end{cases}$$

$$\begin{cases} \upsilon_x(t) = \upsilon_{0x} = \upsilon_0 \cos \alpha \\ \upsilon_y(t) = \upsilon_{0y} + g_y t = \upsilon_0 \sin \alpha - gt \end{cases}$$

$$\begin{cases} g_x = 0 \\ g_y = -g = \text{const} \end{cases}$$



Полное правильное решение задач 22 – 23 должно содержать

- законы и формулы, применение которых необходимо и достаточно для решения задачи

В качестве исходных принимаются формулы, указанные в кодификаторе.

| 2.2.6 | Элементарная работа в термодинамике: $A = p\Delta V$ . Вычисление работы по графику процесса на $pV$ -диаграмме | + | + |
|-------|-----------------------------------------------------------------------------------------------------------------|---|---|
|       | Первый закон термодинамики: $Q_{12} = \Delta U_{12} + A_{12} = \left( U_2 - U_1 \right) + A_{12}$               | + | + |

Изобарный процесс:

$$Q = \triangle U + A = \frac{3}{2} \nu R(T_2 - T_1) + p \triangle V$$

Учитывая уравнение Менделеева-Клапейрона:

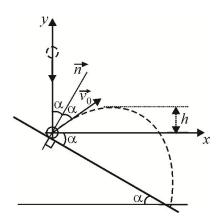
$$Q = \frac{3}{2} p \triangle V + p \triangle V = \frac{5}{2} p \triangle V$$



Полное правильное решение задач 22 – 23 должно содержать

- законы и формулы, применение которых необходимо и достаточно для решения задачи,
- описание вводимых величин (в разделе «Дано», на рисунках или графиках, в самом решении)

Стандартными считаются обозначения физических величин, принятые в кодификаторе


Дано:

$$m_2 = 3 \text{ K}\text{G}$$

$$v_1 = 10 \text{ m/c}$$

$$v_2 = 15 \text{ m/c}$$

$$v_3 - ?$$



h – максимальная высота подъёма после отскока (относительно точки отскока)

Q1 – количество теплоты, полученное в процессе нагревания воды



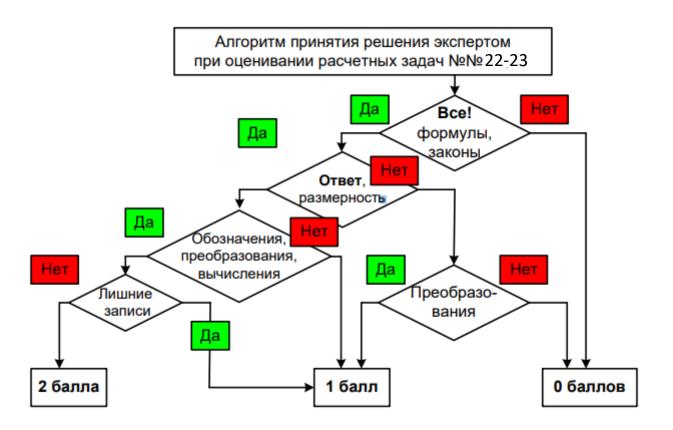
Полное правильное решение задач 22 – 23 должно содержать

- законы и формулы, применение которых необходимо и достаточно для решения задачи,
- описание вводимых величин (в разделе «Дано», на рисунках или графиках, в самом решении)
- математические преобразования,
- расчёты
- численный ответ с единицами измерения

$$F = \frac{\mu * mg - F_{\text{Tp}}}{\mu * \sin \alpha} = \frac{0.2 * 2 * 10 - 2.8}{0.2 * 0.5} = 12 \text{ H}$$



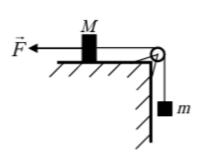
Полное правильное решение задач 22 – 23 должно содержать


- законы и формулы, применение которых необходимо и достаточно для решения задачи,
- описание вводимых величин (в разделе «Дано», на рисунках или графиках, в самом решении)
- математические преобразования,
- расчёты
- численный ответ с единицами измерения
- при необходимости рисунок, поясняющий решение.



Полное правильное решение задач 22 – 23 должно содержать

- законы и формулы, применение которых необходимо и достаточно для решения задачи,
- описание вводимых величин (в разделе «Дано», на рисунках или графиках, в самом решении)
- математические преобразования,
- расчёты
- численный ответ с единицами измерения
- при необходимости рисунок, поясняющий решение.


И не должно содержать лишних записей (не входящих в решение, которые не отделены от решения и не зачёркнуты)



Методические материалы для председателей и членов предметных комиссий субъектов Российской Федерации по проверке выполнения заданий с развёрнутым ответом экзаменационных работ ЕГЭ 2023 года. www.fipi.ru



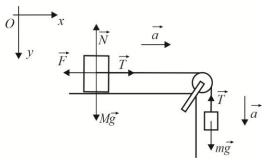
Груз массой M = 0.8 кг, лежащий на столе, связан лёгкой нерастяжимой нитью, переброшенной через идеальный блок, с грузом массой m = 0.5 кг. На первый груз действует горизонтальная постоянная сила F (см. рисунок). Второй груз движется из состояния покоя с ускорением  $2 \text{ м/c}^2$ , направленным вниз. Коэффициент трения скольжения первого груза по поверхности стола равен 0.2. Чему равен модуль силы F?



#### Возможное решение:

Запишем для каждого груза второй закон Ньютона в проекции на горизонтальную и вертикальную оси, направленные по направлению движения грузов.

Для нижнего груза: ma = mg - T.


Связь силы трения скольжения и силы реакции опоры:  $F ext{тp} = \mu * N$ .

Выполняя преобразования, получим

$$Ma = T - F - \mu^*Mg$$
,  $ma = mg - T$ . =>  $T = m(g-a)$ 

$$F = T - \mu Mg - Ma = m(g-a) - \mu Mg - Ma$$
  
 $F = 0.5*(10-2) - 0.2*0.8*10 - 0.8*2 = 0.8 H$ 

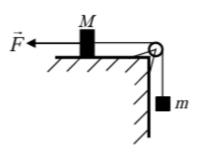
Ответ: 0,8 Н





- записаны положения теории и физические законы, закономерности, <u>применение которых</u> <u>необходимо</u> для решения задачи выбранным способом (в данном случае: <u>второй закон</u> Ньютона, формула для силы трения скольжения);
- описаны все вводимые буквенные обозначения физических величин.
- проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);
- представлен правильный ответ с указанием единиц измерения искомой величины.




#### 1 балл:

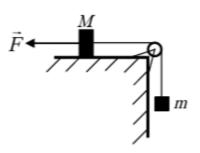
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены преобразования, направленные на решение задачи, но имеется *один или несколько* из следующих недостатков.

- Записи, соответствующие вновь вводимым в решении буквенные обозначения физических величин, представлены не в полном объёме или отсутствуют.
- В решении имеются лишние записи, не входящие в решение, которые не отделены от решения и не зачёркнуты.
- В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.
- Отсутствует ответ или в нём допущена ошибка

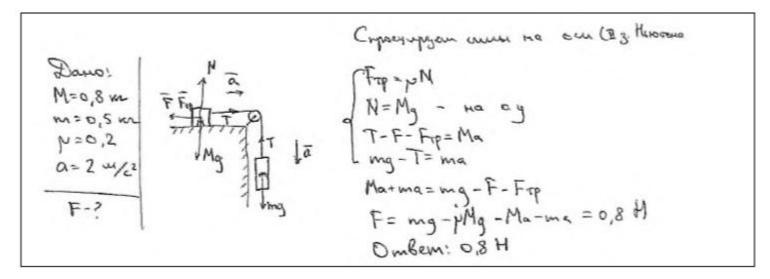


Груз массой M = 0.8 кг, лежащий на столе, связан лёгкой нерастяжимой нитью, переброшенной через идеальный блок, с грузом массой m = 0.5 кг. На первый груз действует горизонтальная постоянная сила F (см. рисунок). Второй груз движется из состояния покоя с ускорением  $2 \text{ м/c}^2$ , направленным вниз. Коэффициент трения скольжения первого груза по поверхности стола равен 0.2. Чему равен модуль силы F?



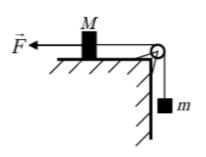

#### Решение на 2 балла:

Dano

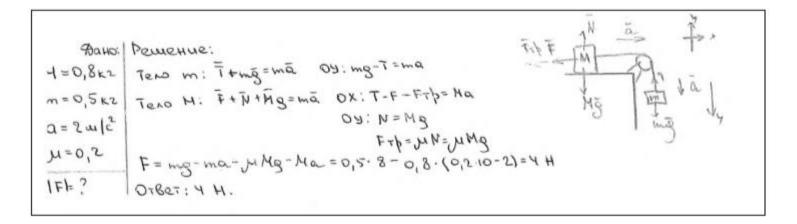

$$M=0.8 \text{ m}$$
 $M=0.5 \text{ m}$ 
 $a=2 \text{ m/o}^2$ 
 $M=0,2$ 
 $M=$ 



Груз массой M = 0.8 кг, лежащий на столе, связан лёгкой нерастяжимой нитью, переброшенной через идеальный блок, с грузом массой m = 0.5 кг. На первый груз действует горизонтальная постоянная сила F (см. рисунок). Второй груз движется из состояния покоя с ускорением  $2 \text{ м/c}^2$ , направленным вниз. Коэффициент трения скольжения первого груза по поверхности стола равен 0.2. Чему равен модуль силы F?




#### Решение на 1 балл:






Груз массой M = 0.8 кг, лежащий на столе, связан лёгкой нерастяжимой нитью, переброшенной через идеальный блок, с грузом массой m = 0.5 кг. На первый груз действует горизонтальная постоянная сила F (см. рисунок). Второй груз движется из состояния покоя с ускорением  $2 \text{ м/c}^2$ , направленным вниз. Коэффициент трения скольжения первого груза по поверхности стола равен 0.2. Чему равен модуль силы F?



#### Решение на 1 балл:



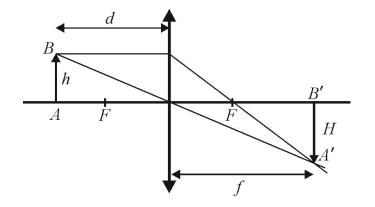


23. В собирающей линзе с фокусным расстоянием F = 20 см получено действительное изображение предмета, который располагается на расстоянии d = 36 см от оптического центра линзы. Высота предмета равна H = 4 см. Постройте изображение в линзе и найдите высоту изображения.

#### Возможное решение:

Применим формулу тонкой собирающей линзы:

$$\frac{1}{F} = \frac{1}{d} + \frac{1}{f}$$


откуда

$$f = \frac{dF}{d - F}$$

Увеличение, даваемое линзой, по определению

$$\Gamma = \frac{H}{h} = \frac{f}{d}$$
 Откуда 
$$H = \frac{hf}{d} = \frac{hF}{d-f} = \frac{4\cdot20~\text{cm}}{36~\text{cm}-20~\text{cm}} = 5~\text{cm}$$

Ответ: 5 см





23. В собирающей линзе с фокусным расстоянием F = 20 см получено действительное изображение предмета, который располагается на расстоянии d = 36 см от оптического центра линзы. Высота предмета равна H = 4 см. Постройте изображение в линзе и найдите высоту изображения.

- написана формула тонкой линзы и формула для нахождения увеличения линзы
- представлен рисунок хода лучей в линзе
- описаны все вводимые обозначения
- Проведены все необходимые преобразования и расчеты
- представлен верный ответ с единицами измерения



23. В сосуд, в котором находилось некоторое количество воды при температуре 20 ∘С, долили 2 л воды, взятой при температуре 80 ∘С. Определите первоначальный объём воды в сосуде, если известно, что установившаяся в смеси температура равна 40 ∘С. Теплообменом с сосудом пренебречь.

#### Возможное решение:

Дано:  $t_1$ =20 °C,  $t_2$  =80 °C,  $t_3$ =40 °C,  $V_2$ =2л.

Найдём массу долитой жидкости:  $m_2 = V_2 \cdot \rho_B = 2 \cdot 10^{-3} \cdot 1000 = 2$  (кг).

Количество теплоты, которое отдаст первая жидкость, можно найти по формуле  $Q_1 = c_R \cdot m_1 (t_3 - t_1)$ .

Количество теплоты, которое получила вторая, нагреваясь до температуры  $t_3$ :  $Q_2 = c_R \cdot m_2 (t_2 - t_3).$ 

$$Q_1 = Q_2$$
.  
 $c_B m_1(t_3 - t_1) = c_B m_2(t_2 - t_3)$ .

Выразим отсюда первоначальную массу воды m1:  $m_1 = \frac{m_2(t_2-t_3)}{t_3-t_1}.$  Тогда первоначальный объём воды  $V1 = m_1/\rho_{\scriptscriptstyle B} = \frac{m_2(t_2-t_3)}{\rho_{\scriptscriptstyle B}(t_3-t_1)}.$ 

V1 = 
$$\frac{2(80-40)}{1000(40-20)}$$
 = 0,004  $M^3$  = 4 ( $\pi$ ).

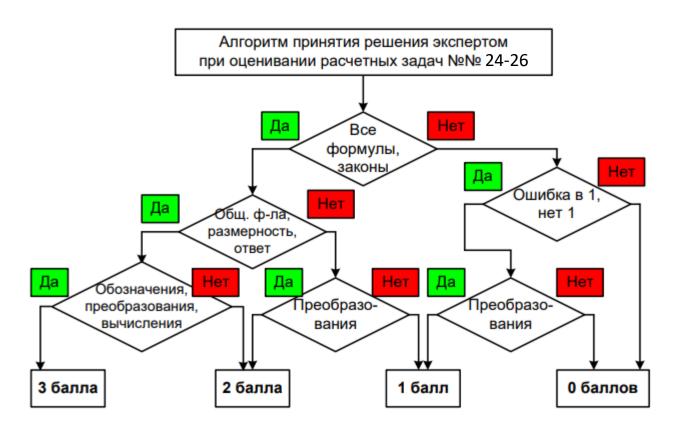
Ответ: 4 л.



23. В сосуд, в котором находилось некоторое количество воды при температуре 20 °С, долили 2 л воды, взятой при температуре 80 °С. Определите первоначальный объём воды в сосуде, если известно, что установившаяся в смеси температура равна 40 °С. Теплообменом с сосудом пренебречь.

- если написано формулы для количества теплоты, выделяющегося при охлаждении и нагревании вещества, уравнение теплового баланса
- описаны все вводимые обозначения
- Проведены все необходимые преобразования и расчеты
- представлен верный ответ с единицами измерения

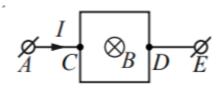



|    | Проверяемые элементы содержания | Уровень<br>сложности | Максимальный<br>балл |
|----|---------------------------------|----------------------|----------------------|
| 24 | Молекулярная физика             | Высокий              | 3                    |
| 25 | Электродинамика                 | Высокий              | 3                    |
| 26 | Механика                        | Высокий              | 4                    |



Полное правильное решение на 3 балла задач 24 – 26 должно содержать

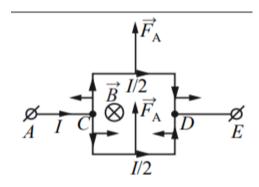
- законы и формулы, применение которых необходимо и достаточно для решения задачи,
- описание вводимых величин (в разделе «Дано», на рисунках или графиках, в самом решении)
- математические преобразования,
- расчёты
- численный ответ с единицами измерения
- при необходимости рисунок, поясняющий решение.


И не должно содержать лишних записей (не входящих в решение, которые не отделены от решения и не зачёркнуты)



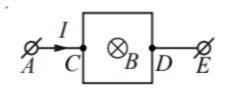
Методические материалы для председателей и членов предметных комиссий субъектов Российской Федерации по проверке выполнения заданий с развёрнутым ответом экзаменационных работ ЕГЭ 2023 года. www.fipi.ru




Квадратная рамка со стороной L = 10 см подключена к источнику постоянного тока серединами своих сторон так, как показано на рисунке. На участке АС течёт ток I = 2 А. Сопротивление всех сторон рамки одинаково. Найдите полную силу Ампера, которая действует на рамку в однородном магнитном поле, вектор индукции которого направлен перпендикулярно плоскости рамки и по модулю В = 0,2 Тл



направлен перпендикулярно плоскости рамки и по модулю В = 0,2 Тл. Сделайте рисунок, на котором укажите силы, действующие на рамку

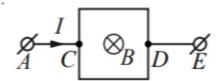

#### Возможное решение:

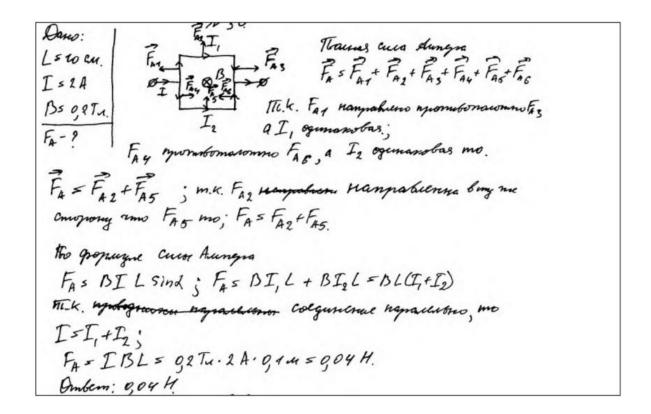
- 1. В точке C ток I разделяется на два одинаковых по силе тока:  $I_1 = I_2 = 0,5 I = 1$  A так как сопротивление обеих половин рамки одинаково.
- 2. На каждый из участков прямого провода действует своя сила Ампера, перпендикулярная направлению тока и вектору магнитной индукции. Направление силы Ампера, действующей на проводник с током, определим по правилу левой руки (см. рисунок).



- 3. Так как  $F_A = I B l (l длина проводника), то силы, действующие на вертикальные стороны рамки, компенсируют друг друга, а силы, действующие на горизонтальные стороны, складываются, так как они сонаправлены друг другу.$
- 4. Окончательно получим:  $F=2F_A=2IBL=2*0,1*0,2=0,04~H~(L-длина стороны рамки), издательство Ответ: <math>F=0,04~H$

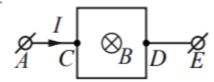
Квадратная рамка со стороной L = 10 см подключена к источнику постоянного тока серединами своих сторон так, как показано на рисунке. На участке АС течёт ток I = 2 А. Сопротивление всех сторон рамки одинаково. Найдите полную силу Ампера, которая действует на рамку в однородном магнитном поле, вектор индукции которого

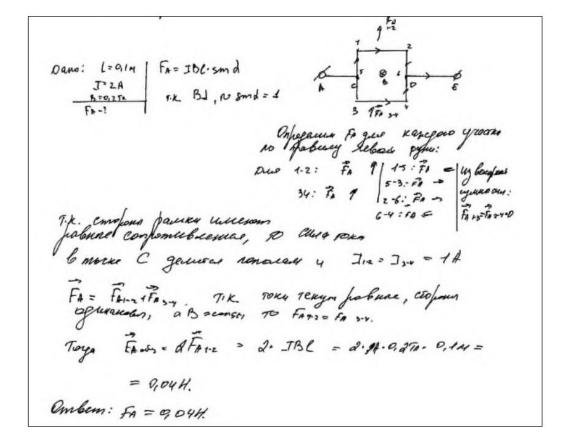




направлен перпендикулярно плоскости рамки и по модулю В = 0,2 Тл. Сделайте рисунок, на котором укажите силы, действующие на рамку

- 1) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: формула для силы Ампера, правило левой руки, принцип суперпозиции сил);
- 2) сделан правильный рисунок, на котором указаны все силы, действующие на рамку;
- 3) описаны все вновь вводимые в решении буквенные обозначения физических величин
- 4) представлены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу;
- 5) представлен правильный ответ с указанием единиц измерения искомой величины

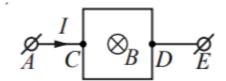


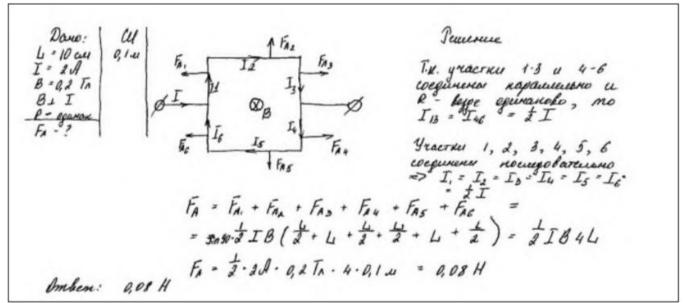

Квадратная рамка со стороной L = 10 см подключена к источнику постоянного тока серединами своих сторон так, как показано на рисунке. На участке АС течёт ток I = 2 А. Сопротивление всех сторон рамки одинаково. Найдите полную силу Ампера, которая действует на рамку в однородном магнитном поле, вектор индукции которого направлен перпендикулярно плоскости рамки и по модулю В = 0,2 Тл. Сделайте рисунок, на котором укажите силы, действующие на рамку









Квадратная рамка со стороной L = 10 см подключена к источнику постоянного тока серединами своих сторон так, как показано на рисунке. На участке AC течёт ток I = 2 A. Сопротивление всех сторон рамки одинаково. Найдите полную силу Ампера, которая действует на рамку в однородном магнитном поле, вектор индукции которого направлен перпендикулярно плоскости рамки и по модулю B = 0.2 Тл. Сделайте рисунок, на котором укажите силы, действующие на рамку







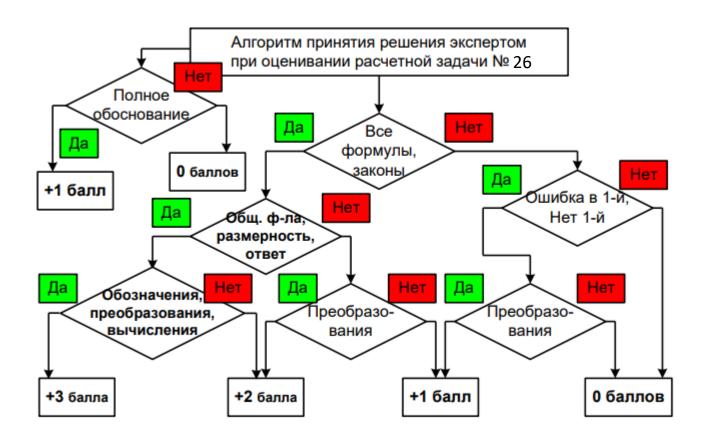

Квадратная рамка со стороной L = 10 см подключена к источнику постоянного тока серединами своих сторон так, как показано на рисунке. На участке АС течёт ток I = 2 А. Сопротивление всех сторон рамки одинаково. Найдите полную силу Ампера, которая действует на рамку в однородном магнитном поле, вектор индукции которого направлен перпендикулярно плоскости рамки и по модулю B = 0,2 Тл. Сделайте рисунок, на котором укажите силы, действующие на рамку







|    | Проверяемые элементы содержания | Уровень<br>сложности | Максимальный<br>балл |
|----|---------------------------------|----------------------|----------------------|
| 26 | Механика (расчётная задача)     | В                    | 4                    |

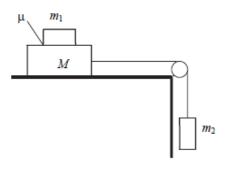

Полное правильное решение задачи 26 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

Кроме того, начиная с этого года дополнительно к решению задания 26 необходимо представить обоснование использования законов и формул для условия задачи. Данная задача оценивается максимально 4 баллами, при этом выделено два критерия оценивания: для обоснования использования законов и для математического решения задачи.

Будут представлены задачи по темам: применение законов Ньютона (связанные тела) и применение законов сохранения в механике.

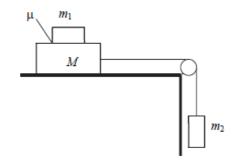
4 балла = 3 балла за решения + 1 балл за обоснование






Методические материалы для председателей и членов предметных комиссий субъектов Российской Федерации по проверке выполнения заданий с развёрнутым ответом экзаменационных работ ЕГЭ 2022 года. www.fipi.ru




Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола горизонтальная гладкая. Коэффициент трения между грузами M и m1  $\mu$  = 0,2. Грузы M и m2 связаны лёгкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 1,2 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое?

Какие законы Вы использовали для описания движения системы грузов? Обоснуйте их применимость к данному случаю.





Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола горизонтальная гладкая. Коэффициент трения между грузами M и m1  $\mu$  = 0,2. Грузы M и m2 связаны лёгкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 1,2 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое?



Какие законы Вы использовали для описания движения системы грузов? Обоснуйте их применимость к данному случаю.

#### Обоснование

- 1. Инерциальность системы отсчёта
- 2. Движение тел поступательное (грузы - материальные точки)



Для решения задачи можем использовать 2 и 3 законы Ньютона

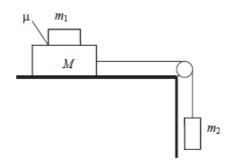
- 3. Рисунок со всеми действующими на тело силами + выбор направления осей.
- Да Пороволово и породи болово болово Силы натажения нити
- 4. Невесомость нити и идеальность блока \_\_\_\_\_

Силы натяжения нити в любой ее точке одинаковы

5. Нерастяжимость нити



Грузы движутся с одинаковыми ускорениями.


6. Условие неподвижности груза m1 \_\_\_\_\_

 $\mathsf{FTp} \leq \mu {\cdot} \mathsf{N}$ 

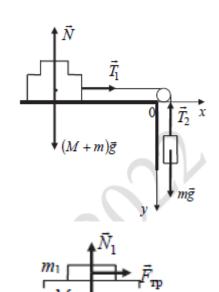


Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола горизонтальная гладкая. Коэффициент трения между грузами M и m1  $\mu$  = 0,2. Грузы M и m2 связаны лёгкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 1,2 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое?

Какие законы Вы использовали для описания движения системы грузов? Обоснуйте их применимость к данному случаю.

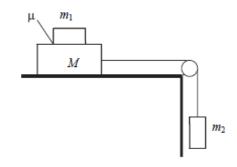


#### Обоснование


Будем считать систему отсчёта, связанную со столом, инерциальной. Пока грузы M и m1 движутся как одно целое, их можно считать одним твёрдым телом сложной формы массой M+m. Это тело движется поступательно, как и груз m2, поэтому эти тела можно описывать моделью материальной точки. В ИСО движение материальной точки описывается вторым законом Ньютона. Покажем на рисунке внешние силы, действующие на это тело и на груз m2. Так как нить лёгкая и скользит по блоку без трения, то можно считать

$$T1 = T2 = T \cdot (1)$$

Так как нить нерастяжима, то ускорения тел

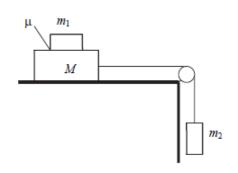

$$a1 = a2 = a . (2)$$

Силы, действующие на груз m1, показаны на втором рисунке. Так как на груз действует сила трения покоя, то она удовлетворяет условию  $Fmp < \mu N1$ .





Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола горизонтальная гладкая. Коэффициент трения между грузами M и m1  $\mu$  = 0,2. Грузы M и m2 связаны лёгкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 1,2 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое?




Какие законы Вы использовали для описания движения системы грузов? Обоснуйте их применимость к данному случаю.

| Критерий оценивания                                                                                                                                                                                     | Баллы |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Верно обоснована возможность использования законов (закономерностей). В данном случае: выбор инерциальной системы отсчета, модель материальной точки, равенство сил натяжений нити, равенство ускорений | 1     |
| В обосновании возможности использования законов (закономерностей) допущена ошибка. ИЛИ Обоснование отсутствует                                                                                          | 0     |
| Всего                                                                                                                                                                                                   | 1     |



Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола горизонтальная гладкая. Коэффициент трения между грузами M и m1  $\mu$  = 0,2. Грузы M и m2связаны лёгкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 1.2 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое?



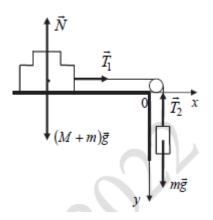
Какие законы Вы использовали для описания движения системы грузов? Обоснуйте их применимость к данному случаю.

#### Возможное решение:

1. Запишем второй закон Ньютона для каждого из тел

$$(M+m)\vec{a_1} = \vec{T_1} + \vec{N} + (M+m)\vec{g}$$
  $m\vec{a_2} = m\vec{g} + \vec{T_2}$ 

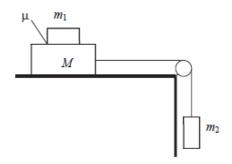
Учтем, что ускорения тел одинаковы, силы натяжения нити равны, и запишем эти законы в проекциях на оси Ох и Оу введённой системы координат. Ox: (M+m) a = T,


Oy: 
$$ma = mg - T$$

Сложим уравнения. Получим:

$$(M+2m)a = mg \implies a = g \frac{m}{M+2m}$$

2. Запишем второй закон Ньютона для груза m1:  $m\vec{a}=\overrightarrow{N_1}+m\vec{g}+\overrightarrow{F_{ t rp}}$ В проекциях на оси Ox и Oy:  $\begin{cases} Ox: & ma = F_{\mathrm{Tp}} \\ Oy: & mg - N_1 = 0 \\ F_{\mathrm{Tp}} \leq \mu N_1 \end{cases}$ 


$$\begin{cases} Ox: & ma = F_{\text{Tp}} \\ Oy: & mg - N_1 = 0 \\ F_{\text{Tp}} \le \mu N_1 \end{cases}$$





Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола горизонтальная гладкая. Коэффициент трения между грузами M и m1  $\mu$  = 0,2. Грузы M и m2 связаны лёгкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 1,2 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое?

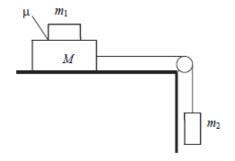
Какие законы Вы использовали для описания движения системы грузов? Обоснуйте их применимость к данному случаю.



Получим:

$$ma \leq \mu N1 = \mu mg$$
,

откуда 
$$a = g \frac{m}{M + 2m} \le \mu g$$
.


Решая неравенство  $\frac{m}{M+2m} \leq \mu$  относительно m, получим:

$$m \le \frac{\mu M}{1-2\mu} = \frac{0.2 \cdot 1.2}{1-2 \cdot 0.2} = 0.4 \text{ (кг)}$$

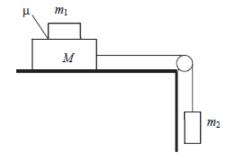
Ответ: *m* ≤ 0,4 кг



Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола горизонтальная гладкая. Коэффициент трения между грузами M и m1  $\mu$  = 0,2. Грузы M и m2 связаны лёгкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 1,2 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое?



Какие законы Вы использовали для описания движения системы грузов? Обоснуйте их применимость к данному случаю.


#### 3 балла:

Приведено полное решение, включающее следующие элементы:

- I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: второй закон Ньютона для всех грузов, формула для силы трения покоя);
- II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений величин, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);
- III) представлены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);
- IV) представлен правильный ответ с указанием единиц измерения физической величины

В качестве исходных принимаются формулы, указанные в кодификаторе. Стандартными считаются обозначения физических величиниздате принятые в кодификаторе.

Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола горизонтальная гладкая. Коэффициент трения между грузами M и m1  $\mu$  = 0,2. Грузы M и m2 связаны лёгкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 1,2 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое?



Какие законы Вы использовали для описания движения системы грузов? Обоснуйте их применимость к данному случаю.

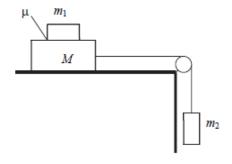
#### 2 балла:

Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования, но имеется один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.

и (или)

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.

и (или)


В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

и (или)

Отсутствует пункт IV, или в нём допущена ошибка (в том числе в записи единиц измерения величины)



Система грузов M, m1 и m2, показанная на рисунке, движется из состояния покоя. Поверхность стола горизонтальная гладкая. Коэффициент трения между грузами M и m1  $\mu$  = 0,2. Грузы M и m2 связаны лёгкой нерастяжимой нитью, которая скользит по блоку без трения. Пусть M = 1,2 кг, m1 = m2 = m. При каких значениях m грузы M и m1 движутся как одно целое?



Какие законы Вы использовали для описания движения системы грузов? Обоснуйте их применимость к данному случаю.

#### 1 балл:

Представлены записи, соответствующие <u>одному</u> из следующих случаев.

Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.

#### ИЛИ

В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

#### ИЛИ

В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи



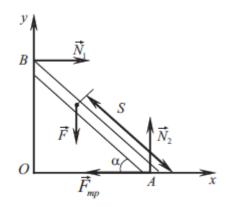
Лестница длиной I = 4,0 м приставлена к идеально гладкой стене под углом  $\alpha$  = 60° к горизонту. Коэффициент трения между лестницей и полом  $\mu$  = 0,33. На какое расстояние S вдоль лестницы может подняться человек, прежде чем лестница начнёт скользить? Массу лестницы не учитывать.



Лестница длиной I = 4,0 м приставлена к идеально гладкой стене под углом  $\alpha$  = 60° к горизонту. Коэффициент трения между лестницей и полом  $\mu$  = 0,33. На какое расстояние S вдоль лестницы может подняться человек, прежде чем лестница начнёт скользить? Массу лестницы не учитывать.

#### Обоснование

- 1. Инерциальность системы отсчёта
- 2. Форма и размеры тела неизменны, расстояние ———— Модель твёрдого тела между любыми двумя точками тела остаётся неизменным
- 3. Рисунок со всеми действующими на тело силами + выбор направления осей.
- 4. Условие равновесия тела в зависимости от вида возможного движения (для поступательного движения равенство нулю векторной суммы сил, для вращательного равенство нулю суммы моментов сил относительно выбранной точки)


Лестница длиной I = 4,0 м приставлена к идеально гладкой стене под углом  $\alpha$  = 60° к горизонту. Коэффициент трения между лестницей и полом  $\mu$  = 0,33. На какое расстояние S вдоль лестницы может подняться человек, прежде чем лестница начнёт скользить? Массу лестницы не учитывать.

#### Обоснование

Инерциальную систему отсчёта, относительно которой лестница находится в равновесии, удобно связать с поверхностью Земли. Расставим силы, действующие на лестницу и направим оси декартовой системы координат, как показано на рисунке. Описываем стержень АВ моделью твёрдого тела (форма и размеры тела неизменны, расстояние между любыми двумя точками тела остаётся неизменным).

В случае скольжения лестница будет участвовать в сложном движении: поступательном (вдоль оси Ох) и вращательном (вокруг оси в точке А, проходящей через нижний конец лестницы).

Следовательно, для решения задачи необходимо использовать оба условия равновесия тела. Первое для поступательного движения (сумма внешних сил равна нулю); второе — для вращательного движения (сумма моментов внешних сил относительно оси вращения равна нулю).





Лестница длиной I = 4,0 м приставлена к идеально гладкой стене под углом  $\alpha$  = 60° к горизонту. Коэффициент трения между лестницей и полом  $\mu$  = 0,33. На какое расстояние S вдоль лестницы может подняться человек, прежде чем лестница начнёт скользить? Массу лестницы не учитывать.

| Критерий оценивания                                                                                            | Баллы |
|----------------------------------------------------------------------------------------------------------------|-------|
| Верно обоснована возможность использования законов (закономерностей)                                           | 1     |
| В обосновании возможности использования законов (закономерностей) допущена ошибка. ИЛИ Обоснование отсутствует | 0     |
| Всего                                                                                                          | 1     |



# Комментарии

- Решение экзаменуемого может иметь логику, отличную от авторской логики решения (альтернативное решение).
- В качестве исходных формул принимаются только те, которые указаны в кодификаторе. При этом форма записи формулы значения не имеет. Если же выпускник использовал в качестве исходной формулы ту, которая не указана в кодификаторе, то работа оценивается исходя из отсутствия одной из необходимых для решения формул.
- Решение задач может оцениваться в 2 балла при полном правильном решении и верном ответе, если не описаны дополнительно введённые физические величины. Описанием считается словесное указание на величину рядом с её символическим обозначением, указание символического обозначения величины в записи условия («Дано») или на схематическом рисунке. Допускается введение новых величин без описания, если используются стандартные обозначения, принятые в кодификаторе

www.fipi.ru



# Комментарии

- Если в тексте задания требуется сделать рисунок с указанием сил, действующих на тело, то правильным считается рисунок, в котором верно указаны все необходимые силы и их направление. Ошибка в соотношении длин векторов и отсутствие знака вектора не считаются ошибками.
- При проверке правильности числового ответа необходимо проверить вычисления экзаменуемого при помощи калькулятора. Допускаются округления с учётом того числа значащих цифр, которые указаны в условии задачи. Избыточная точность числового ответа не считается ошибкой. При решении задачи по действиям допускается погрешность ответа, не меняющая физической сути числового ответа задачи.

www.fipi.ru



#### EΓ9 - 2025



#### Книга содержит:

- 30 тренировочных вариантов
- теоретический материал
- ответы ко всем вариантам
- решение всех заданий с развернутым ответом

#### Оглавление

| Глав | sa I | Теоретический материал для подготовки к ЕГЭ         |   |
|------|------|-----------------------------------------------------|---|
| §    | 1.   | Механика                                            |   |
|      | 1.1. | Основные понятия и законы кинематики                |   |
|      | 1.2. | Основные понятия и законы динамики                  |   |
|      | 1.3. | Основные понятия и законы статики и гидростатики    | 1 |
|      | 1.4. | Законы сохранения                                   | 1 |
|      | 1.5. | Механические колебания и волны                      | 1 |
| §    | 2.   | Молекулярная физика. Термодинамика                  | 1 |
|      | 2.1. | Газовые законы                                      | 1 |
|      | 2.2. | Элементы термодинамики                              | 1 |
| §    | 3.   | Электродинамика                                     | 2 |
|      | 3.1. | Основные понятия и законы электростатики            | 2 |
|      | 3.2. | Электроёмкость. Конденсаторы.                       |   |
|      |      | Энергия электрического поля                         | 2 |
|      | 3.3. | Основные понятия и законы постоянного тока          | 2 |
|      | 3.4. | Основные понятия и законы магнитостатики            | 2 |
|      | 3.5. | Основные понятия и законы электромагнитной индукции | 2 |
|      | 3.6. | Электромагнитные колебания и волны                  | 2 |
| §    |      | Оптика                                              | 3 |
|      | 4.1. | Основные понятия и законы геометрической            |   |
|      |      | оптики                                              | 3 |
|      |      | Основные понятия и законы волновой оптики           | 3 |
| §    | 5.   | Основы специальной теории                           |   |
|      |      | ( / / /                                             | 3 |
| §    |      | Квантовая физика                                    | 3 |
|      |      | Основные понятия и законы квантовой физики          | 3 |
|      |      | Основные понятия и законы ядерной физики            | 3 |
|      |      | Методы научного познания и физическая картина мира  | 3 |
| K    | ратк | ие справочные данные                                | 4 |
|      |      | T.                                                  |   |
| Глав |      | Тренировочные варианты                              |   |
|      |      |                                                     | 4 |
|      |      | иант № 1                                            | 4 |
|      |      | иант № 2                                            | 5 |
|      |      | иант № 3                                            | 6 |
|      |      |                                                     | 7 |
|      | Bap  | иант № 5                                            | 8 |

|                                      | Оглавление |
|--------------------------------------|------------|
| Вариант № 6                          | 96         |
| Вариант № 7                          | 107        |
| Вариант № 8                          |            |
| Вариант № 9                          |            |
| Вариант № 10                         |            |
| Вариант № 11                         |            |
| Вариант № 12                         |            |
| Вариант № 13                         |            |
| Вариант № 14                         |            |
| Вариант № 15                         |            |
| Вариант № 16                         |            |
| Вариант № 17                         | 219        |
| Вариант № 18                         |            |
| Вариант № 19                         | 241        |
| Вариант № 20                         | 252        |
| Вариант № 21                         | 263        |
| Вариант № 22                         | 273        |
| Вариант № 23                         | 283        |
| Вариант № 24                         |            |
| Вариант № 25                         | 303        |
| Вариант № 26                         | 313        |
| Вариант № 27                         |            |
| Вариант № 28                         | 333        |
| Вариант № 29                         | 342        |
| Вариант № 30                         | 352        |
| ешения заданий с развёрнутым ответом |            |
| Ответы                               |            |
| /IBCIDI                              | 400        |



#### EΓ9 - 2025

А.М. МОНАСТЫРСКИЙ, Г.С. БЕЗУГЛОВА

ФИЗИКА

ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН

ЕГЭ-2025

ТЕМАТИЧЕСКИЙ ТРЕНИНГ

1500 ЗАДАНИЙ В ФОРМАТЕ ЕГЭ

БАЗОВЫЙ, ПОВЫШЕННЫЙ И ВЫСОКИЙ УРОВНИ СЛОЖНОСТИ

ОБРАЗЦЫ РЕШЕНИЯ ЗАДАНИЙ

ТЕОРИЯ И ОТВЕТЫ КО ВСЕМ ЗАДАНИЯМ

#### Книга содержит:

- около 1500 заданий, разделенных по уровню сложности и разделу физики
- краткую теорию к каждому разделу
- ответы ко всем заданиям
- решения примерно трети заданий

| $\sim$ |            |   |    |   |    |    |   |
|--------|------------|---|----|---|----|----|---|
| 0      | $\Gamma J$ | а | R. | Л | eт | ΗИ | e |

| От авторов                                                                                                   | 0  |
|--------------------------------------------------------------------------------------------------------------|----|
| Краткие справочные данные                                                                                    | 11 |
| Глава I. Механика                                                                                            | 14 |
| Теоретический материал                                                                                       | 14 |
| <u> Қинематика</u>                                                                                           | 14 |
| Динамика материальной точки                                                                                  | 17 |
| Законы сохранения в механике                                                                                 | 19 |
| Статика                                                                                                      | 21 |
| Расчётные задания базового уровня сложности                                                                  | 22 |
| § 1. Кинематика                                                                                              | 22 |
| 1.1. Движение с постоянной скоростью                                                                         | 22 |
| 1.2. Сложение скоростей                                                                                      | 25 |
| 1.3. Движение с постоянным ускорением                                                                        | 27 |
| 1.4. Свободное падение                                                                                       | 33 |
| 1.5. Движение по окружности                                                                                  | 36 |
| § 2. Динамика                                                                                                |    |
| 2.1. Законы Ньютона                                                                                          | 38 |
| 2.2. Сила всемирного тяготения, закон всемирного                                                             |    |
| тяготения                                                                                                    | 42 |
| 2.3. Сила тяжести, вес тела                                                                                  |    |
| 2.4. Сила упругости, закон Гука                                                                              |    |
| 2.5. Сила трения                                                                                             |    |
| § 3. Законы сохранения в механике                                                                            |    |
| 3.1. Импульс. Закон сохранения импульса                                                                      |    |
| 3.2. Работа силы. Мощность                                                                                   |    |
| 3.4. Потенциальная энергия и ее изменение  3.4. Потенциальная энергия                                        |    |
| 3.5. Закон сохранения и изменения механической энергии                                                       |    |
|                                                                                                              |    |
| 4.1. Равновесие тел                                                                                          |    |
| 4.2. Закон Архимеда. Условие плавания тел                                                                    |    |
|                                                                                                              |    |
| Изменение физических величин в процессах                                                                     | 01 |
| Установление соответствия между графиками и физическими величинами; между физическими величинами и формулами | 70 |
| Объяснение явлений; интерпретация результатов опытов, представленных в виде таблицы или графиков             | 83 |

| Расчётные залани            | ия повышенного уровня сложности                                |
|-----------------------------|----------------------------------------------------------------|
|                             | тика                                                           |
|                             | ка материальной точки                                          |
|                             | сохранения в механике                                          |
|                             | в. Основы гидромеханики                                        |
| 3                           | ия высокого уровня сложности                                   |
| Глава II. Молег             | сулярная физика109                                             |
| Теоретический ма            | птериал                                                        |
| Молекуляры                  | иая физика                                                     |
| Термодинам                  | ика                                                            |
|                             | базового уровня сложности                                      |
|                             | лярно-кинетическая теория                                      |
|                             | ство вещества                                                  |
|                             | юе уравнение МКТ. Температура                                  |
|                             | ние состояния идеального газа                                  |
|                             | в законы                                                       |
| <ol> <li>Термоді</li> </ol> | инамика                                                        |
| 2.1. Внутре                 | нняя энергия, количество теплоты, работа в термодинамике . 128 |
|                             | й закон термодинамики                                          |
|                             | пловых двигателей                                              |
| 2.4. Количе                 | ство теплоты. Уравнение теплового баланса                      |
| § 3. Насыщ                  | енный пар. Влажность воздуха141                                |
| Изменение физич             | еских величин в процессах                                      |
| Установление сос            | тветствия между графиками и физическими величинами;            |
| между физически             | ими величинами и формулами                                     |
| Объяснение явле             | ний; интерпретация результатов опытов,                         |
| представленных              | в виде таблицы или графиков                                    |
| Расчётные задачи            | повышенного уровня сложности                                   |
| § 4. Молеку                 | лярная физика                                                  |
| § 5. Термоді                | инамика                                                        |
| Расчётные задачи            | высокого уровня сложности                                      |
| Глава III. Элект            | родинамика192                                                  |
| Теоретический ма            | периал                                                         |
| Основные п                  | онятия и законы электростатики                                 |
| Электроёмк                  | ость. Қонденсаторы. Энергия электрического поля194             |
| Основные п                  | онятия и законы постоянного тока                               |
| Основные п                  | онятия и законы магнитостатики                                 |
| Основные п                  | онятия и законы электромагнитной индукций 📉 🔀 ИЗЛАТЪ           |

Оглавление

#### EΓ9 - 2025



#### Книга содержит:

- теорию по всем разделам курса
- больше 450 заданий разного уровня сложности с решениями и ответами
- алфавитный указатель



#### Книга содержит:

- 700 заданий повышенного и высокого уровня сложности
- несколько примеров работ учеников с комментариями оценки
- примеры решений примерно трети из них
- ответы на все задания

### ОГЭ и ЕГЭ - 2025

| Л.М. Монастырский, А.С. Богатин,<br>Г.С. Безуглова |
|----------------------------------------------------|
| ФИЗИКА                                             |
| КАРМАННЫЙ БЕГИОН                                   |
| 7-11 <b>ЕГЭ</b> ВПР                                |

| Кратки | ий справочник по физике 7                |
|--------|------------------------------------------|
| 9.4.   | Механические свойства упругих тел.       |
|        | Упругие деформации                       |
| 9.5.   | Агрегатные (фазовые) переходы 155        |
| § 10.  | Поверхностное натяжение жидкостей 159    |
| 10.1.  | Сила поверхностного натяжения 159        |
| 10.2.  | Капиллярные явления         162          |
| § 11.  | Электростатика                           |
| 11.1.  | Основные законы электростатики 164       |
| 11.2.  | Работа электрического поля               |
|        | при перемещении заряда                   |
| § 12.  | Постоянный ток                           |
| 12.1.  | Законы постоянного тока                  |
| 12.2.  | Электрический ток в различных средах 208 |
| § 13.  | Магнитостатика                           |

| 8     | Оглавление                         |
|-------|------------------------------------|
| 13.1. | Механическое взаимодействие        |
|       | магнитов. Магнитное взаимодействие |
|       | токов. Магнитное поле              |
| 13.2. | Сила Ампера и сила Лоренца         |
| 13.3. | Магнетики                          |
| § 14. | Электромагнитная индукция          |
| § 15. | Электромагнитные колебания         |
|       | и волны                            |
| 15.1. | Свободные электромагнитные         |
|       | колебания в контуре                |
| 15.2. | Переменный электрический ток 252   |
| 15.3. | Трансформатор                      |
| 15.4. | Производство и передача            |
|       | электроэнергии                     |

| Краткий справочник по физике 9 |                                |
|--------------------------------|--------------------------------|
| 15.5.                          | Электромагнитное излучение     |
|                                | Геометрическая оптика          |
| 16.1.                          | Законы отражения и преломления |
|                                | света                          |
| 16.2.                          | Линза. Построение изображений  |
|                                | в линзах                       |
| § 17.                          | Волновая оптика                |
| 17.1.                          | Интерференция света            |
|                                | Дифракция света                |
| 17.3.                          | Дисперсия света                |
| § 18.                          | Элементы специальной теории    |
|                                | относительности                |
| § 19.                          | <b>Квантовая физика</b>        |

| 10         | Краткий справочник по физик     |
|------------|---------------------------------|
| 19.1.      | Гипотеза М. Планка о квантах.   |
|            | Формула Планка                  |
| 19.2.      | Фотоэффект. Опыты Столетова.    |
|            | Законы фотоэффекта              |
| § 20.      | Физика атома                    |
| § 21.      | Физика атомного ядра 323        |
| § 22.      | Астрофизика                     |
| 22.1.      | Солнечная система               |
| 22.2.      | Звёзды                          |
| 22.3.      | Млечный Путь и другие галактики |
| Литература |                                 |
|            |                                 |



#### Книги

Приобретайте пособия нашего издательства в интернет-магазине <a href="http://legionr.ru/books/">http://legionr.ru/books/</a>,

а также в книжных магазинах Вашего города


(список адресов размещен здесь <a href="http://legionr.ru/companies/">http://legionr.ru/companies/</a>)













#### Спасибо за внимание!

#### Издательство «Легион» на связи:

Сайт, интернет-магазин: www.legionr.ru

E-mail: <a href="mailto:legionrus.com">legionrus.com</a>

Тел.: 8(863)303-05-50, 282-20-76

